PHYSICAL REVIEW E, VOLUME 63, 016304
Renormalization group analysis for thermal turbulent transport
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In this study, we continue with our previous renormalization group analysis of incompressible turbulence,
aiming at determination of various thermal transport properties. In particular, the temperature ifietdn-
sidered a passive scalar. The quasinormal approximation is assumed for the statistical correlation between the
velocity and temperature fields. A differential argument leads to derivation of the turbulent Prandtl number Pr
as a function of the turbulent Peclet,;P@mber, which in turn depends on the turbulent eddy viscogityl he
functional relationship betweenRmd Peis comparable to that of Yakhet al.[Int. J. Heat Mass Trans80,
15(1987] and is in close consistency with direct-numerical-simulation results as well as measured data from
experiments. The study proceeds further with limiting the operation of renormalization group analysis, yielding
an inhomogeneous ordinary differential equation for an invariant thermal eddy diffusiv@ymplicity of the
equation renders itself a closed-form solutioruadis a function of the wave numblerwhich, when combined
with a modified Batchelor's energy spectrum for the passive temperafuiailitates determination of the
Batchelor constan€Cg and a parallel Smagorinsky model and the model consEanfor thermal turbulent
energy transport.
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| INTRODUCTION Pr, and had an excellent account of various results related to
the number, both theoretical and experimental as well as nu-
Presently, we continue to pursue recursive renormalizamerical. There are several known results, in particular, from
tion group (RG) analysis[1] of incompressible turbulence, direct numerical simulation(DNS), about the turbulent
aiming at determining various turbulent transport propertiesPrandtl number Rmas a function of the turbulent Peclet num-
The analysis starts with the Naviver-Stokes equation in th&er Pe; these include Kasagit al. [5] for Pr;=0.025, and
wave number space under the hypothesis that large-scale eg?" et al.[6] as well as Kim and Moiti7] for Pr;=0.1. The
e

dies are statistically independent of those of smaller scal NS results were .at present necessarily restricted to low
In a previous study, we were able to determine several tur- eynolds numbers: nonetheless, the well-documented data
’ may serve as a useful check against theoretical as well as

bulent flow properties; these include a renormalized energy,nerimental results. There have been also numerous mea-
spectrum with Kolmogorov's constant determined and an insyred data from experiments that correlate the turbulent
homogeneous ordinary differential equation for an invariantprandtl number Rito the turbulent Peclet number Render
effective eddy viscosity, which allows for a closed-form so-various thermal turbulent conditions. Of particular interest to
lution that facilitates derivation of the Smagorinsky modelthe present study are Bremhost and Kr¢®k Sheriff and
for large-eddy simulation of turbulent flow. O’Kane[9], and Fuch10]; these authors provided detailed
In the study, we shall be concerned with turbulent transmeasurements of Prandtl numbers in liquid sodium at the
port properties for the passive scalar, in particular, the temcenterline of pipe flow by varying entry flow conditions.
perature field. There are several points of interest regarding The recursive renormalization group analysis is carried
these properties. First of all, estimation of the Batchelor con®ut for investigation of the points addressed above and other
stant has been an effort of research since BatcHgl@  asPects as well. For thl_s, we shall further take the_hypotheS|s
proposed his scaling laws for the thermal turbulent energy! quasinormal approximatiofil1] for the correlation be-

spectrum respectively for Pr1 and Pg<1. Many authors (Ween the velocity and temperature fields. In Sec. II, the
FBasw idea of the recursive renormalization group analysis is

have made efforts in estimating or measuring the constant,” L . )
different values were obtained, ranging from as low as 0.2 u riefly explained; we are then able to proceed with establish-
to about 2 under various tr’1ermal flow conditions 'Thement of a recursive relationship for an effective thermal dif-
. B fusivity o, between two successive steps of renormalization.
Prandtl number RBr=vo/0o, defined to be the ratio of the |, goc )1 ‘we derive the turbulent Prandtl number & a
molecular viscosity an_d thermal d|f_fu3|V|ty and_ its turbulent function of the turbulent Peclet number,Rad give a simple
analog Pr, could possibly be the single most important pa-g|ationship at large Peclet numbers fog®4. The formula
rameters in the study of thermalrbulen) flow. Because of s comparable to the one derived by Yakleotal.[12]; both
Pr=wvi/oy, itis of great interest to obtain a “not too com-  theories give generally close agreement with the DNS results
plicated” formula relating Rrto other characteristic flow cited above. In particular, for P 0.01, the present formula
numbers, e.g., the turbulent Peclet number=HR,v/vy.  gives remarkable coincidence with the DNS results of Bell
We may establish such a relationship from which the thermaét al. [6] and Kim and Moin[7], while for Py=0.025 our
turbulent diffusivity o, can be easily read provided the vis- results lie somewhat above those calculated by Kasgagi.
cous turbulent diffusivityy, has been obtained by other [5]. The relationship also shows close agreement with the
means. In a recent article, Kayd] gave a convincing dis- measured data of Bremhost and Kr¢B$ for Pr,=0.0058,
cussion of the role played by the turbulent Prandtl numbeand those adapted from Sheriff and O’Kar§ and Fuch
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| | ! ——t | To distinguish the supergrid and subgrid modes, we intro-

0 koo ky oo ko ki ko o0 duce the commonly used notation as follows:
FIG. 1. The termink; for recursive renormalization with a fixed [u;(k,t) for |k|<kq,
cutoff ratio A =k, 1 /k, . Recursive renormalization analysis starts Ug(k,t)=1 =
at the Kolmogorov's scal&, and ends at the cutoff wave number u, (k,t) for [k[>kq,
ke .
and

[10] for Pry=0.0072. In Sec. IV, an equation of an invariant

effective thermal diffusivityc as a function of the wave T=(k,t) for [k|<kq,
numberk is sought with limiting operation of recursive T(k,t)= T>(k,t) for |k|>k;.
renormalization. The equation turns out to be an inhomoge-

neous ordinary differential equation which is simple enoughgefore substantial progress can be made with the renormal-
to render itself a closed-form solution. The invariartk), j;ation group analysis, we shall take the following statistical

together with our previous result of the invariant effective hypotheses: (i) The turbulence fields have ensemble-mean-
viscous eddy viscosity(k), yields an invariant effective a4 fluctuation:

Prandtl number Pr as a function of the wave numberhe
closed-form solutionr(k), when combined with a modified >k 1)) =(T> _

' - =(T7(k,t))=0.
Batchelor’s thermal turbulent energy spectrum, further facili- (Uq (kD) =(T"(k,1)=0
tates, respectively, in Secs. V and VI determination of the... . . -
Batchelor constan€s and derivation of a parallel Smagor- _(n) Supergrid components are.con3|dered to be statistically
insky model for thermal turbulent transport and the modelIndependent of subgrid averaging:
constantCp ; both constant€g andC; are found to depend
upon several characteristic wave numbers. Finally, conclud-
ing remarks are drawn in Sec. VII.

(ug(k,)=ug(k,t), (T(kt)=T"(k).

(iii) The triple moment of velocity and thermal passive scalar
is considered to follow the quasi-normal approximafit],

Il. RENORMALIZATION OF THE PASSIVE-SCALAR . . .
as explained in Lesieyn3], p. 238:

EQUATION

As in our previous studj1], the turbulence considered is (uuT)y=(uuy(T).
isotropic, stationary in time and homogeneous in space. The
flow is assumed to be governed by the incompressibl@erforming subgrid averaging of Eqd) and (2) with the
Navier-Stokes equation, which in wave number space readase of(i) and(ii), we may obtain, respectively, the equation
for the supergrid velocity; ,

J 2 3 . .
E"’Vok )ua(k,t)=Maﬁy(k)f d¥jug(j,Hu(k=j,1),
1)

1%
E+ vokz) us(k,t)= Maﬁy(k)f d3j[u;(j,t)u;(k—j,t)

where +(ug(,Hus (k=j,0)1, 3

M 5. (K)=[ksD,.(K)+k.D,4(k)]/2i, , _
pr(K) = LkgD (k) ;D (k)] and the equation for the supergrid temperaflifg

with

d
(_+O'ok2

ook | T =ik, | T (k10uz G0

Dop(K)= 0.5~ 2"
H(T7(k—j,Hug (j,))]. 4
The passive scalar, in particular the temperature fielis
governed by the thermal energy equation, which in waveas for the subgrid components, we shall take the Markovian
number space reads approximation by neglecting/dt; this gives, respectively,

the equation for the subgrid velocity, ,

(%-&-aokz)T(k,t): —ikaf d*j T(k—j,Hua(,1). (2

(1012007 0=y [ 03 TU3 07,005 G =0
The basic idea of recursive RG analysis is to divide the

wave number space (Q), wherek, is Kolmogorov's scale, +2ugz()", Hus (=i’ b)

to a supergrid region (K,) and a subgrid regionk(,kg); o o

the subgrid modes are then removed shell by shell by taking +ug (i, Ouy (=i’ 0], 5
the subgrid average over a spherical shdl} G .k,), as

shown in Fig. 1. and the equation for the subgrid temperatlifg,
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_il2 i2 >, >
(O_OkZ)T>(k,t):_ikaf d3j/[T<(k_j/,t)u§(jr't) (0-0|k J| +VOJ )<T (k ],t)ua(J,t)>

TR OuS () T ~ itk ig) | @1 G0URGOT =
X (k=07 (D + T (k=)

= _i(kﬁ_jﬁ)f d®"Dap(i) 6 +i QU T=(k=j—j".t)
Xug (j",0]. (6)

= —ikgD () QT (K1), (10

It was shown by our previous study that the second ternwhere we have used the velocity autocorrelation
on the right-hand sidéRHS) of Eq. (3) has been ascribed to
the production to the effective viscous eddy diffusivity. Par- (Ug (1, DUz (7 0)=D () 8(j+j")Q()
allel to this, we shall evaluate explicitly the second term on
the RHS of Eq.(4), which contributes to the effective ther- and applied the obvious relatiojyD ,4(j)=0 in the last
mal eddy diffusivity. equality.

For this purpose, we make use of E6) by renaming the Substituting Eq(10) into Eq. (4), we finally obtain, after
index « by B andk by k—j, and then multiply on both sides removing the first subgrid shell, the renormalized equation
by u; (j.t), followed by subgrid ensemble averaging. This for the passive temperatufie

yields p
E+Ul(k)k2)T(kyt):_ikaJ d® T(k=j,Hu,(j,b)
(oolk =T~ (k=j,Huz (j,1) (11
. . ., ., for 0<|k|<k; by introducing the effective th | eddy dif-
=—I(kﬁ—Jg)Jd3J (T (k—j—i" 1 fS;ivity| | <k by introducing the effective thermal eddy di
Xug (j,Hugz (1) o1(K) = 0+ 80o(K),
(T (k== DuG.Ouz ()], (D) with the first increment given by
k,k D, s()E(
where we have employed hypotheéis) to treat(T-u"u~) Soo(k)= “—Bzf ddj ,1@(]2) (J).z —
as a zero subgrid-averaging term. The next step is to multiply 4mk® o, [oolk—=j[*+ voj“]]

T~ (k—j,t) on both sides of Eq(5), and then take subgrid 1 (1- pd)E()
averaging to obtain = —f ddj .'uz ——,
4w Jo, * [oolk=j[*+vojl]

(voi (T7(k—j,tyu_ (j,b)) where we have denoted () the isotropic energy spec-
trum as 47j°Q(j), and u the direction cosine between the
= 2Map] )f o (U7 DUy (=1 0T (k=]0). }[/eeg;rtgtriztl ?sn?)\j/,e??ﬁetzg?%fkﬁl?eaég():'[Tof(olf;vaoZ)s.p-rll—zfeisr?-
® Qg ={ilke<lil, Ik=jl<ko}.
Adding Eqgs.(7) and (8) together gives Repeating the renormalization procedure for removal of the

nth subgrid shell yields the general recursive relationship for
the effective thermal eddy diffusivity forQ|k| <k, 1,
(oolk—=j|>+woj (T~ (k—j,Hu; (j.1))

on+1(K)=0on(k) + 6on(k), (12)
:f d3j’[—i(kﬁ—j3)<T>(k—j—j’,t)uz(j,t) with the nth increment given by
XUg (', 1))+ 2M (DU (i U5 (=" 1) 1 N (1—u)Eq()
Son(ky=—| d - - ——,
XT7(k=j,0) =i(kg=] (T~ (k=j=]",1) 4ar fa [on(k=D)Ik=jl*+va(i)i?1j? s

Xug(,0ug(j",0)1. €)
b ) wherev,(k) denotes the renormalized effective eddy viscos-

ity andE,(j) the renormalized kinetic energy spectrum, both
According to hypothesi§ii ), both the first and second terms of which have been obtained by the present authbf& an
on the RHS of the above equation vanish E®). simply  early study. Again, the integration is over the set of intersec-
reduces to tion of two spheres:
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FIG. 2. The typical behavior of the increment of the effective
eddy viscositydv,, and thermal eddy diffusivitydo,, versus the
normalized wave numbds(0O<k<1), as the cutoff ratio\ is close
to 1.

Qn(K)={jlKn+1<lil, [k=j|<kn}.

In parallel to Eq.(12), we have had for the effective mo-
mentum eddy viscosity

Vn+1(K) = vp(K) + ovn(Kk), (14
with the increment given by

L(k,k=))En())
il?+ va(lk=iDIk=j[*]’

1
dvn(k =—f d3j - .
Vn( ) 2 0, J J2k2[ Vn(J

(15

where

(K2 kP ) (1— )
L(k,k—j)= -
( J) |k_J |2
For later use, we record here
En(i)=AsCxen’] 5’3exp(70;”26;1’3vn<1>j4’3 :

(16)

whereCy is the Kolmogorov constant ang, is the rate of
dissipation of the kinetic energy. The factdy is a modified
function taking account of large-scale eddies given by

Xs+ 5/3

A= e

wherex=k/k, with k, denotes the peak of wave number of

energy-containing eddies. As expected, the effective thermal I1(Q(ky;1))=27

eddy diffusivity (k) for the passive scaldrshould depend
in some way on its counterpart (k) for the momentum; Eq.

PHYSICAL REVIEW E63 016304

is shared with the incremerdr,(k) of the effective eddy
viscosity (or viscous eddy diffusivity Both increments of
viscous and thermal eddy diffusivities start with negligibly
small values at lower wave numbers and rise rapidly near the
cutoff wave number; this behavior is in good agreement with
that obtained by Kraichnafil4] based on his testing field
model (TFM).

IIl. TURBULENT PRANDTL NUMBER Pr

The simplest approach for turbulent heat transfer is the
Reynolds analog, i.eyy=0; (Pr=1). However, as indi-
cated by Kayd4], for most thermal boundary layers flows,
the Reynolds analog is quite close to correct, but it still not
precisely correct, and there are distinguished departures.

In this section, we will analyze, for each cutoff wave
numberk., the variation of the turbulent Prandtl number
with the turbulent Peclet number. First of all, we evaluate the
recursive relationshipl?2) for the effective thermal diffusiv-
ity at the terminal valué,, 1:

Tnr1(Knr1) =0n(Kapq) + 00n(Kni ).

By writing sk=k,,—k,;, and evaluating Eq(13) at k. 1,
we readily obtain

On+1(Knr1) = on(Kngn)
kn_ kn-%—l

2/3
n

ok J'Qn(kn+1)d3j
(1- u2)Ay(j/ky)j SR 180k ey Prn(ni®®
Con k=D
17

CKE
41

whereA,=1 asj>k,. In the limit of n>1, the integral on
the RHS is of ordek and the numerator of the LHS of the
above equation must be in magnitude of the oréler By
taking the limit, we havesk<1, k,—k., v,—v, o,— 0,
and the measure d2,(k,; ) is of the ordersk, wherev
=v(k.) ando=o(k;) denote, respectively, the invariant ef-
fective viscous and thermal eddy diffusivities. The measure
of the set(Q),(k,.1) given below Eq.(13), in the limit of
k,+1—K, can be approximated by

kI sk

1 2
\/1—(5) 1+ O(8KY).

Vi-(3yz ke

(13) exhibits explicitly such dependence. Figure 2 shows the

typical trend, for the cutoff ratio\ near unity, of the incre-
mentdo, (k) of the effective thermal eddy diffusivity, which

It follows from these facts that Eq17) is led to the differ-
ential version
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do(ke) CKEZBJ 3 10° . 1
dkc 476k Q(ke) i i
[1_(k/2])2]] —5/3e—1.5;1/2571/31/(]”1/3 I :
[o(k=DIk=]P+ 1(1)iZ]}? Q| Eeeo o
wob———— N __ "
Cre?de 18Dk, H1-(3)2) EIN :
I X |
otk + okl . e
B Ed: (24), Pr;20.02] > @l
; : g Ny
whereB(1)=C, Y2 %%"y(k.) and has been estimated to b >
be 0.6633 from o i Kasagi et al. DNS, P, 10.025 > —
. ur previous analydis]. The same argu- 100 TR L N e
IEq.(24T, Pr=0.1 i N

ment applies to the effective viscous eddy diffusivity and
leads to the differential expression

(19

O —— il

dV(kC) CK62/3e—1.5B(1)Kc—11/Tl_(%)2]
d kc a 4y( kc) 10"
10* 10" 10° 10'

Equipped with the results of Eq€L8) and(19), we are now Pe,

able to proceed with derivation of an algebraic equation re-

lating the turbulent Prandtl number,Ro the turbulent Peclet _ FIG. 3. The turbulent Prandtl number;Rrersus the turbulent
number Pg. For convenience of calculation, we defindo ~ Peclet number Re plotted based on Eqsi24) and (21) for

be the inverse of the effective eddy Prandtl numbekgr( Pr,=0.001, 0.025, and 0.1 with comparisons to numerical results
and write from DNS by several authors, as shown.

a+2
a0+2

a(ke) _ oot oi(Ke)
v(ke) a vot+vi(ke) '

l/3< a—1 )2/3_ o
v(Ke)

a(kl)=Pr (k)= (20 (23

apg— 1
where oy and vy denote in turn the molecular thermal and Recalling v(k.) = vo+ v¢(k.), we may rewrite the RHS of
viscous diffusivities, whilev; and o, are, respectively, called the above equation to obtain

the thermal and viscous turbulent eddy diffusivities. The

Prandtl number is defined to be,Prvg/oy; we may further Y a—1)28 1
define the turbulent Prandtl number,Pw, /o, and also the ~1+Pg/Pry’
turbulent Peclet number RPePryv,/vy. Thena can further

be rewritten as It is of great interest to compare EQR4) with a similar
formula obtained by Yakhait al.[12], which reads, in terms
of the present notation,

a+2.1793\%3% o—1.1793)\ 065
ay+2.179 ao—1.179

a+2
C(0+2

aog— 1 (24)

1+PgPrt -
“ TPrp+Pq - @D

. (25

Differentiating @ with respect td, in Eq. (20) with use of
Egs.(18) and(19) yields

~1+Pg/Pr

The apparent resemblance between the form@d4sand

da(ky) | Cke?Pe 1B M 1-($)2]| 1 (25) is quite remarkable not only because of the similarity in
dk, 2[o (ko) + v(Ko)] v(Ko) mathematical structure, but because the results are basically
derived entirely from different approaches to renormalization
v'(ke) group analysis of turbulence. According to Eq24) and
Ta v(ke) (21), Pr, can be represented in terms of, Per any given
Prandtl number RBr Figure 3 shows the results for three
2 ik Eq. (14 different values of RE=0.01, 0.025 and 0.1. Comparison
e+l @ v(ke) [since Eq.(14)]. with the DNS (direct-numerical-simulationresults of Bell

et al. [6] and Kim and Moin[7] shows excellent agreement
for Prp=0.1, while there is a mild discrepancy with that of
Kasagiet al. [5]. For comparison, we recall from Kajy]
that it is at P§=0.01 rather than B#0.1 that the result
In[(a+2)"Y(a—1)"2"]=Inv(k,)+C, based on the formula of Yakhet al. showed good agree-
ment with the cited DNS results, which were all obtained at
where the constan€ should be chosen such tha(k,) Pr,=0.1. For comparison with experiments, Fig. 4 shows
—vg and o (k) — o9 ask.—ky (with ko denoting the Kol-  also close agreement of the present formula fg=Rr0058
mogorov scalg and thus (which has little difference while for B+=0.0072) with the

(22

Equation(22) can be easily integrated to give
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3 @
i o
25 o) Fuch, Pr,=0.007
2F
& [ Sheriff & O’Kane, Pr,=0.0072
15}
I Bremhost & Krebs, Pr,=0.0058
1} Eq. (24), Pr,=0.0058 & Pr,=0.0072
- 0.5 L L L
| 107 10° 10' 10° 10°
0 Il Il Il Ll I Il L Il I | I L Il Il Pel
307 10° 10’
Pe, FIG. 5. Curves of the turbulent Prandtl numbey Rersus the

turbulent Peclet number Pdérawn based on Eq&4) and(21). Part
FIG. 4. The turbulent Prandtl number Reersus the turbulent (g) for Pr,<1, which is from above 0.005, 0.05, 0.5, and 1; fiajt
Peclet number Replotted based on Egs(24) and (21) for  for Pr,>1, which is from above 5, 10, 20, 30, and 40.
Pr,=0.058(or 0.073 along with the experimental data measured by

Bremhost and Krebf8], Sheriff and O'Kang 9], and Fuch{10]. formula based on experimental data has been proposed by

Bremhost and Krebg3]. Finally, we noticed that the Peclet
number Pgis a thermal analog of the Reynolds number. The
~ L0 . reason why Rralways tends to 1 as Pleecomes sufficiently
l:hUCh [1?] fl_or Pr?_tk?.om,l f\llbmleasturgd 'fr: Ilqu1|_dh s?dt'fmtat large would be that at this time the thermal flow turbulence is
€ centerline of tnermal turbulent pipe Tlow. The 1atter WOcompletely convection dominated and the temperature Tield

references did not report Riirectly in terms of Pg the data responds immediately to any change of the velocity field
shown are adapted from the references by appropriate scaﬁ

ings; Fuch’s result, however, still deviates from the present
formula at small Pe IV. INVARIANT EFFECTIVE THERMAL EDDY
The formula determined by E@24) with « given by Eq. DIFFUSIVITY

(21) is of general interest in several aspects. For eagctor
Pry), Eg. (24) is an algebraic equation of degree 3; there is
always a solution to it. For the particularyPrd, it is noticed ) oo .
that the Reynolds analog, i.e., PrL, always holds true no the effective thermal eddy diffusivity,,, as the cutoff ratio
matter what the turbulent Peclet numbey, Be but for Pg A te.nds ol o~
#1, the Reynolds analogy can only hold true in the limit of ~ First of all, we rescale the wave numbletby settingk
Pg>1. Figures %a) and 3b) show, respectively, a few =k/k, 1. Suggested by our previous scaling result for the
curves of Prversus Pefor Pry<1 and for Pg>1. For Py  effective eddy viscosity, (k) =7,(k)k, “*, we propose also
<1, the turbulent Prandtl number®s observed to decrease a similar scaling law for the effective thermal eddy diffusiv-
monotonically to 1 as Rés increased indefinitely, while for jty (Tn(k):an(”k)k;“/3 and rewrite Eq(13) in the form
Pro>1, P increases with increasing Reand finally satu-
rates to 1. For either p1 or Pg>1, the curve of Rrver- 2% —4f3

i hi i ; Cken k ~
sus Peis higher for larger Ry; that is, for given Pg the Sor(K)= K&n n+lf 3

experimental data taken from Bremhost and Kré®kfor
Pr,=0.0058, Sheriff and O’Kan¢9] for Pr,=0.0072, and

The purpose of the section is to determine the limiting
solution to the recursive renormalization equatid?) for

magnitude of Rrwould decrease as frs increased. For Arr ﬁnd J
each Pg<1, there is a concise alternative which shows ex- _ _
cellent approximation to the general formula, E&4), and (1 pd)A] ~Bexp —C Y%, () e, V42
which is given by X - =~ - = — = = .
[on(k=DIK=j[?+74())j ?1i 2
H
_ 2
Pa=pg+ 1 (26) (27)

The recursive equatiof12) can then be recast in the rescaled

whereH and @ are positive integers that depend upogp RN dimensionless form

example of this is the case of $2r0.1, for which we have
good approximation by setting =0.64 andd=0.87 in Eq. _ _ _
(26). It is also of interest to note that a similar empirical T 1(K)— A~ %35, (kA)= A~ *355,(kA). (29)
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Now we write A=1—¢, and letn—o. Equivalently, we B¢(1), we have had the estimat®(1)=0.6633, and thus
have¢—0, o,— 0, and thus Eq(28) becomes fon>1 B+(1) can be found from the turbulent Prandtl number Pr
=1 in the limit of large Pg[cf. Eq.(24)]. It follows from Eq.

~ do(k) 4 (21) that Pe=>1 for moderate Rrimplies «=1/Pr=1; then,
k—— +§U(k) ¢ we have
o k Cl/261/3k*4/38 (1) B-+(1
(1—§)""3 1=a(ke)= ko) _ e 1/3C—4/3T B
— 2/3f o5 v(k)  CH2%e¥;*PB(1) ~ 0.6633
a
_ e _ and thereforeB+(1)=B(1)=0.6633. Substituting the value
X(l—Mz)AplfslgeXD(—ch ve B9 in the expression o€, we finally have the same form as
2[3(T)|T|2+5(|R—T|)|E—T|2] B(k) for the solutionBt(k):
—1/2~ - ~ ~ ~
_ Gk Ajexp —L5C, " (1)e 1) BT(k)=B(k)=0.6116<‘4’3+0.1394( k- 5—2k3)
A 7(1)+0o(1) (33
,R 2
XL_(,Z (D) +0(&2), (29) V. EVALUATION OF THE BATCHELOR CONSTANT

o Batchelor[2,3] was the first to propose scaling laws for
whereZA Ap(ks/kp) and we have knowdl(0,)=27KE e thermal energy spectrum respectively fopsPt and
+0(£9), asn>1. And therefore Eq(29) in the limit of ¢ pr <1 |eaving a proportional consta@s undetermined.

—0 becomes Subsequently, many authors have tried to estimate or mea-
sure the value o€g under various flow conditions.
~kd‘7( )+ 40’(k) In theory, Kraichnan14] had the estimaté&Cgz=0.208,

and Gibsorj16] had the estimat€g= 0.9, while Yakhot and
o3 ne e s Orszag[17] obtainedCg=1.16 according to theie-based
Cye™ Agjexp(—1.C " p(1)e” ™) renormalization group analysis. Kdrt8] had the numerical
2 (1) +3(1) valueCg=0.6. In experiment, Gibson and Schwat8] had
s Cg=0.35, Grantet al. [20] obtainedCz=0.31, and Boston
and Burling[21] had Cz=0.81, while Gurvich and Zubk-
1_<§) } B0 gyski [22] obtainedCg=2.0.

In the present study, we shall show that Batchelor’'s con-
This is an inhomogeneous ordinary differential equation thastant actually depends ongPas well as some characteristic
we seek for the rescaled invariant effective thermal eddywvave numbers to be described below. First of all, let us
diffusivity o(k). The equation is simple enough to rendermodify the original Batchelor’s thermal energy spectrum by
itself a closed-form solution. To simplify the expression, letintroducing two connecting functionB, and B,, respec-
us introduceBT(‘k):CE1/2€71/35_('R), and rewrite Eq(30) tively, fo_r Pry< 1_and P§>1 so tha_t the scaling laws wit_h an
in a more compact form appropriate choice of the proportional constant may fit well

the experimental data. Lgtdenote the dissipation rate of the

RdBT(T‘) ) fBT(T(): exf — 1.5B(1)] T{ . (E) T thermal energy; we have for(PEl_,ll3 .
K 3 2[B(1)+B(1)] 2 Er(k)=CgB1(X) xe k", (34)
(32) where
Equation(31) can be easily integrated to give the exact so- x*“ K
lution By(x)= =7 with x= P
B (R) = (BT(l) 135 )124/3@:,,(?1;— SRl e,
364 7 52
(32) E(K) = CgBa(x) ye Yk 5% 200 (3g)
whereB+(1) is to be determined below ar@, is given by where
C,=Ajexd —1.58(1)1/{2[Br(1)+B(1)]}. By00= xZ3(1+x71)

i 1B with x=+— K

If we return B(k) to o(k), the leading term ofr(k) is as

simply proportional toe**k~*3; this scaling result is exactly In these expressiong.q is the conductive wave number
Richardson’s four-thirds lawcf. [15], p. 556. To determine  which is of the order /)4, while kys is the dissipation
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FIG. 6. The scaling law of the thermal energy spectifapik) FIG. 7. The plot shows that the scaling law of the thermal en-

versus the normalized wave numtkk, for Prp<1, defined by Eq.  ergy spectrunE (k) versus the wave numbé&rfor Pry> 1, defined
(34) with a proper choice of the proportional constant, fits well the by Eq. (35) with a proper choice of the proportional constant, fits
measured data taken from Boston and Burliag]. well the measured data taken from Grantal. [20]

wave number of the ordere(v®)Y% There are two other Figure 7 shows that the measured data of Gearatl. [20]
important characteristic wave numbégsandk,, which de- is in good agreement with the curve plotted based on
note, respectively, the wave number of the largest eddy exgq. (35) for Pry>1 with the value okys as indicated. Grant
isting in the flow and the peak wave number of the energyt g, performed experiments in the open sea and in a tidal

contgining eddies. hannel; their data showed thkg is about the order of
Figure 6 shows that the measured data of Boston an 0, K, is of the order 1, and/k, andk,/ko are almost

Burling [21] fit excellently with the curve plotted based on
g (2] y P identical and take the value about 0.001, whigs/kg

Eq. (34) for Prp<<1 with the value ok.q4 as indicated. Bos- o
ton and Burling made measurements in air at a heightof 4 locates at about 0.06. Liquid water at 293 K has Prandtl

over a tidal mud flat; their data showed thatk, andks/k, ~ number P§=~6.99. From the figure, we observe that Egp)
are almost identical and take the value about 0.001, whiléollowed a power law of—5/3 in the inertial-convective
k.q/Ko locates at about 0.03. Air-# at 290 K has Prandtl range ofks<k<kys and a power law of-1 in the viscous-
number Pg~0.73. From the figure, we observe that E8{) convective range oky<k<k,., wherek,. is of the order
follows a power law of-5/3 in the inertial-convective range (e/o?v)Y4,

of ke<k<k.q and a power law of-17/3 in the inertial- With Egs. (34) and (35), we are now able to determine
conductive range of.q<k<Kg. the Batchelor constant; it is natural to require

kC
f 2C*Coxk*F1(k)B(Kiksg)dk  (for PR<1),

Y= f kk°2a(k)kZET( k)dk= , (36)

s f “2CY2C kY3 1(K)B,(kikge e 27 "edk  (for Prp>1)

S

where the functionF; is introduced by settinga(k)zcﬁ’zelBFT(k) in analogy with its viscous counterpaut(k)
=Ci?%€®F (k), and thus we have(k)=Br(k)k, *JF(k)=B(k)k; **]. Rearrangement of E436) gives

ke -1
[zcyzjk k1/3FT(k)Bl(k/kcd)dk} (for Pry<<1),

Cg= (37

ke = -1
[20&’2 f k1’3FT(k)BZ(k/kds)eZC%T\szdk} (for Pr>1).

S
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Figure 8a) shows a plot ofCg versusk. /ky based on Eq. dissipative wave numbéy and the peak energy-containing
(37) for Prp<<1, from which it is clear to see also the depen-wave numbek, (or k). There are also two trends of interest
dence ofCg on the characteristic wave numbers: the con-to be noted: (i) The Batchelor constar@z decreases with
ductive wave numbek.q and the peak energy-containing increasing the normalizeld. /ky, and(ii) Cg increases as the
wave numbek, (or ks). There are two trends of interest to dissipative ratiokys/k, is increased. The plot of this part
be noted: (i) The Batchelor constar@g increases with in-  varies in a range of characteristic wave numbers that include
creasing the normalizekl./ky, and(ii) Cg increases as the those measured by Graet al. [20] whose experiment gave
conductive ratiok.q/kq is increased. The plot of this part Cg=0.31 in good agreement with the values presented in the
varies in a range of characteristic wave numbers of thermdigure. These observations indicate clearly t@atis not a
energy spectrum that include those measured by Boston anthiversal constant, but depends on the shape of the actual
Burling [21] whose experiment gav€g=0.81, which is, thermal energy spectrul(k).
however, substantially higher than the values presented in Equation(37) is in integral form, and the integration may
the figure. Figure &) is a plot of Cg versusk./k, based on be carried out if we make the approximation by taking only
Eq. (37) for Prp>1, from which it is clear to see also the the leading terms of (k) and F(k), that is, Fr(k)=F¢
dependence o on the characteristic wave numbers: the=0.6116 %3, this yields the more explicit formula

1 (Ke/keg)*+1 ko]t
V2 n =~ p =< for Pry<1),
(1.394$K 4In(kc/k0d)4+1 + nks ( b<<l)
Ce= sl ke 3 -1 (38)
[1.394:0&’%—1-09% (Ink—°+§R1—3R2)] (for Pp>1),
S
|
where (ko) = 0.663zv7 2K AN i e
TR =2 K2 Lox,  ox c
K \2B [ \23 i
=
kds kds
Specifically, let us consider turbulent flow with B€l, for
and which we have PK.)~Pr(k.) according to Eq(21). Solv-
ing then the algebraic equatidd0) for o(k.) with k. re-
ko \ M3 [ kg )13 placed by 2r/A where A denotes the cutoff wavelength
2=(k—) _(k_) gives
ds ds
0.6633"2 aus  aus
VI. SMAGORINSKY MODEL FOR A PASSIVE SCALAR (k)= ———— Pr(k) CFAZ —— + —
427 X OXi

The usual Smagorinsky model is used for the large-eddy
simulation of Navier-Stokes equation. In this section, we will
construct a parallel model for turbulent transport of the pas-
sive scalar. First of all, we express the rate of dissipation of

the kinetic energy in the resolvable velocity: Equation(41) is the thermal Smagorinsky model for the pas-
sive scalaiT, and the model constafly is given by

VN T

= P4 T
o CP( kC)A an OX;

. 41

(39

(k) (auf 0uj<>2
€= _+_

2 \axg o ax _ 0.6633"

p(Ke) = W \/Pl‘t(kc)CﬁM( ko) = 0.009-(3&/4( Ko),
~ ar
Recallo(k) = CL%*3B1(k)k, ** and evaluate Eq32) atk,

to obtain where we may simply take fk.)=1, implied by Pe>1

B [cf. Eq. (24)]. Figure 9 shows how the Smagorinsky model
a(ke)=Cil%"*Br(1)ks . constantCp varies with k./k,. As the normalizedk,/kq
moves away from 1, the model constad} is increasing,
Replacinge on the RHS of the above equation by E§9  and the constant increases also with increasing the normal-
enables us to obtain ized peak wave numbds, /k, of energy-containing eddies.
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FIG. 8. The behavior oCg vs k. /K, for the flow with 0.001 FIG. 9. The behavior of the Smagorinsky const&g versus

<ks/kp<<0.006 and 0.002k,/ko<0.012. Parta) for Pp<l with i /k, for the thermal turbulent transport with 0.00k/kg
0.05<kca/ko<<0.1; part(b) for Pr>1 with 0.05<kgs/ko<<0.055.  <0.006 and 0.002k, /k,<0.012; the upper curves correspond the

higher ratios.
VII. CONCLUDING REMARKS

In the present study, we have focused on renormalizatioity. Equation(30) is the required equation which is an inho-
group analysis of incompressible turbulence, aiming at inimogeneous ordinary differential equation and is simple
vestigating thermal turbulent transport properties. enough to render an exa@varian) solution which is given

First of all, we obtain a recursive relationship for the ef- by Eq.(33). Also, we have modified Batchelor’s scaling laws
fective thermal eddy diffusivityor(k;). The relationship is for the thermal energy spectru(k) by introducing two
then applled to determine a formula for the turbulent Pl’andtbonnecting functiongl and B2 so that the Sca“ng laws fit
number Ptr in terms of the turbulent Pecelet numbert Pe better the measured Spectra by Boston and Buﬂmg for
Seeking the connection between Bnd Pein a simple for- it over sea surface and by Grasttal. [20] for water in a
mula is of great importance in modeling thermal turbulentijga| channel, but again leaving the proportional conggant
flow and has motivated various studies in theoretical analysigngetermined. The solution of the invariant effective thermal

fm.d ex_ﬁ)_ﬁrimgnt?l mleasburement as well gshirénurgfrical Simlé’ddy diffusivity is then employed to determine the Batchelor
ation. The simple algebraic equatig24) with Eq. (21) pro- constant, which was shown to depend on several character-

vides one such connection, whose close resemblance to . . .
(25) obtained by Yakhoet al. [12] is remarkable not only Elgttig:nwave numbers of the particular flow under consider

because of the similarity in mathematical structure, but also .
y In spite of the above success, we must recall that the

they are derived from entirely different approaches to renor- . . . .
malization group analysis of turbulence. In particular, thePresent theory is based on isotropic, stationary, and homoge-

present formula has been shown to be in excellent agreemefiOUS turbulence, and statistical hypothe@kg(iii) are not

with the results of direct numerical simulations by Beflal. ~ hondebatable. But the close agreement between the results of

[6] and Kim and Moin[7], and in good agreement with that the present renormalization group analysis and DNS, experi-

of Kasagiet al. [5]. The formula also shows close agree-Ments that typically do not follow the present assumptions

ments with the measured data of Bremhost and Ki8band  about turbulence, should, however, indicate that there must

those adapted from Sheriff and O’Kafi@] and Fuch[10] be properties that are universal to all thermal turbulent flows.

(but with discrepancy at small Pe In particular, the formulas and relationships, as summarized
Estimation of the Batchelor constant is then another majoabove for various thermal turbulent properties, are simple

effort of study for thermal turbulent transport. Many authorsenough and are amenable to further investigation, verifica-

have tried to estimate or measure its value either by theorytjon, and modification under various flow and thermal con-

experiment, or numerical computation under various thermadlitions.

flow conditions; the data obtained by different authors scatter

in the range from as low as 0.2 of Kraichnd#] to a value

2.0 of Gurvich and_ Zubkovsk{22]. What we have done in ACKNOWLEDGMENT

the present study is to show analytically that the Batchelor

constant is not universal and to determine its dependence. This work was supported in part by the National Science

For this, we had to pursue the differential version of theCouncil of the Republic of China under Contract No.

recursive relationship for an effective thermal eddy diffusiv-NSC89-2212-E002-067.

016304-10



RENORMALIZATION GROUP ANALYSIS FOR THERMA. . .. PHYSICAL REVIEW E 63 016304

[1] C. C. Chang, B. S. Lin, and C. T. Warfgnpublisheg [12] V. Yakhot, S. A. Orszag, and A. Yakhot, Int. J. Heat Mass

[2] G. K. Batchelor, J. Fluid Mectb, 113 (1958. Transf.30, 15 (1987.

[3] G. K. Batchelor, I. D. Howells, and A. A. Townsend, J. Fluid [13] M. Lesieur, Turbulence in Fluids: Stochastic and Numerical
Mech. 5, 134 (1958. Modeling (Kluwer, Dordrecht, 1990

[4] W. M. Kays, ASME J. Heat Transfelr16, 284 (1994). [14] R. H. Kraichnan, J. Fluid MecHL1, 945 (1968.

[5] N. Kasagi, Y. Tomita, and A. Kuroda, ASME J. Heat Transfer [15] A. S. Monin and A. M. Yaglom Statistical Fluid Mechanics:
114, 598(1992. Mechanics of Turbulence&Cambridge, MA, MIT Press, 1981

[6] D. M. Bell, J. H. Ferziger, and P. R. Spaldunpublishegl [16] C. H. Gibson, Phys. Fluid$l, 2316(1968.

[7] J. Kim and P. Moin, inProceedings of the Sixth International [17] V. Yakhot and S. A. Orszag, J. Sci. Compiit.3 (19863.
Symposium on Turbulent Shear Fl@@pringer, Berlin, 1987  [18] R. M. Kerr, J. Fluid Mech211, 309 (1990.

pp. 85—-96. [19] C. H. Gibson and W. H. Schwarz, J. Fluid Mech6, 365
[8] K. Bremhost and L. Krebs, Int. J. Heat Mass Trarg§, 351 (1963.

(1992. [20] H. L. Grant, B. A. Hughes, W. M. Vogel, and A. Moillient, J.
[9] N. Sheriff and D. J. O’Kane, Int. J. Heat Mass Trargf, 205 Fluid Mech.34, 423 (1968.

(1980. [21] N. E. J. Boston and R. W. Burling, J. Fluid Mech5, 473
[10] H. Fuch, Ph.D. thesis, Institut fuReaktorforschung, Vifen- (1972.

lingen, 1973. [22] A. S. Gurvich and S. L. Zubkovski, Izv., Acad. Sci., USSR,
[11] P. Y. Chou, Chin. J. Phydl, 1 (1940. Atmos. Oceanic Phy, 118(1966.

016304-11



