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Renormalization group analysis for thermal turbulent transport
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In this study, we continue with our previous renormalization group analysis of incompressible turbulence,
aiming at determination of various thermal transport properties. In particular, the temperature fieldT is con-
sidered a passive scalar. The quasinormal approximation is assumed for the statistical correlation between the
velocity and temperature fields. A differential argument leads to derivation of the turbulent Prandtl number Prt

as a function of the turbulent Peclet Pet number, which in turn depends on the turbulent eddy viscosityn t . The
functional relationship between Prt and Pet is comparable to that of Yakhotet al. @Int. J. Heat Mass Transf.30,
15 ~1987!# and is in close consistency with direct-numerical-simulation results as well as measured data from
experiments. The study proceeds further with limiting the operation of renormalization group analysis, yielding
an inhomogeneous ordinary differential equation for an invariant thermal eddy diffusivitys. Simplicity of the
equation renders itself a closed-form solution ofs as a function of the wave numberk, which, when combined
with a modified Batchelor’s energy spectrum for the passive temperatureT, facilitates determination of the
Batchelor constantCB and a parallel Smagorinsky model and the model constantCP for thermal turbulent
energy transport.

DOI: 10.1103/PhysRevE.63.016304 PACS number~s!: 47.27.Eq
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I. INTRODUCTION

Presently, we continue to pursue recursive renormal
tion group ~RG! analysis@1# of incompressible turbulence
aiming at determining various turbulent transport propert
The analysis starts with the Naviver-Stokes equation in
wave number space under the hypothesis that large-scal
dies are statistically independent of those of smaller sca
In a previous study, we were able to determine several
bulent flow properties; these include a renormalized ene
spectrum with Kolmogorov’s constant determined and an
homogeneous ordinary differential equation for an invari
effective eddy viscosity, which allows for a closed-form s
lution that facilitates derivation of the Smagorinsky mod
for large-eddy simulation of turbulent flow.

In the study, we shall be concerned with turbulent tra
port properties for the passive scalar, in particular, the te
perature field. There are several points of interest regard
these properties. First of all, estimation of the Batchelor c
stant has been an effort of research since Batchelor@2,3#
proposed his scaling laws for the thermal turbulent ene
spectrum respectively for Pr0@1 and Pr0!1. Many authors
have made efforts in estimating or measuring the const
different values were obtained, ranging from as low as 0.2
to about 2 under various thermal flow conditions. T
Prandtl number Pr05n0 /s0 , defined to be the ratio of the
molecular viscosity and thermal diffusivity and its turbule
analog Prt , could possibly be the single most important p
rameters in the study of thermal~turbulent! flow. Because of
Prt5n t /s t , it is of great interest to obtain a ‘‘not too com
plicated’’ formula relating Prt to other characteristic flow
numbers, e.g., the turbulent Peclet number Pet5Pr0n t /n0 .
We may establish such a relationship from which the ther
turbulent diffusivitys t can be easily read provided the vi
cous turbulent diffusivityn t has been obtained by othe
means. In a recent article, Kays@4# gave a convincing dis-
cussion of the role played by the turbulent Prandtl num
1063-651X/2000/63~1!/016304~11!/$15.00 63 0163
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Prt and had an excellent account of various results relate
the number, both theoretical and experimental as well as
merical. There are several known results, in particular, fr
direct numerical simulation~DNS!, about the turbulent
Prandtl number Prt as a function of the turbulent Peclet num
ber Pet ; these include Kasagiet al. @5# for Pr050.025, and
Bell et al. @6# as well as Kim and Moin@7# for Pr050.1. The
DNS results were at present necessarily restricted to
Reynolds numbers: nonetheless, the well-documented
may serve as a useful check against theoretical as we
experimental results. There have been also numerous m
sured data from experiments that correlate the turbu
Prandtl number Prt to the turbulent Peclet number Pet under
various thermal turbulent conditions. Of particular interest
the present study are Bremhost and Krebs@8#, Sheriff and
O’Kane @9#, and Fuch@10#; these authors provided detaile
measurements of Prandtl numbers in liquid sodium at
centerline of pipe flow by varying entry flow conditions.

The recursive renormalization group analysis is carr
out for investigation of the points addressed above and o
aspects as well. For this, we shall further take the hypoth
of quasinormal approximation@11# for the correlation be-
tween the velocity and temperature fields. In Sec. II,
basic idea of the recursive renormalization group analysi
briefly explained; we are then able to proceed with establ
ment of a recursive relationship for an effective thermal d
fusivity sn between two successive steps of renormalizati
In Sec. III, we derive the turbulent Prandtl number Prt as a
function of the turbulent Peclet number Pet and give a simple
relationship at large Peclet numbers for Pr0!1. The formula
is comparable to the one derived by Yakhotet al. @12#; both
theories give generally close agreement with the DNS res
cited above. In particular, for Pr050.01, the present formula
gives remarkable coincidence with the DNS results of B
et al. @6# and Kim and Moin@7#, while for Pr050.025 our
results lie somewhat above those calculated by Kasagiet al.
@5#. The relationship also shows close agreement with
measured data of Bremhost and Krebs@8# for Pr050.0058,
and those adapted from Sheriff and O’Kane@9# and Fuch
©2000 The American Physical Society04-1
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@10# for Pr0'0.0072. In Sec. IV, an equation of an invaria
effective thermal diffusivitys as a function of the wave
number k is sought with limiting operation of recursiv
renormalization. The equation turns out to be an inhomo
neous ordinary differential equation which is simple enou
to render itself a closed-form solution. The invariants(k),
together with our previous result of the invariant effecti
viscous eddy viscosityn(k), yields an invariant effective
Prandtl number Pr as a function of the wave numberk. The
closed-form solutions(k), when combined with a modified
Batchelor’s thermal turbulent energy spectrum, further fac
tates, respectively, in Secs. V and VI determination of
Batchelor constantCB and derivation of a parallel Smago
insky model for thermal turbulent transport and the mo
constantCP ; both constantsCB andCP are found to depend
upon several characteristic wave numbers. Finally, conc
ing remarks are drawn in Sec. VII.

II. RENORMALIZATION OF THE PASSIVE-SCALAR
EQUATION

As in our previous study@1#, the turbulence considered
isotropic, stationary in time and homogeneous in space.
flow is assumed to be governed by the incompress
Navier-Stokes equation, which in wave number space re

S ]

]t
1n0k2Dua~k,t !5Mabg~k!E d3 j ub~ j ,t !ug~k2 j ,t !,

~1!

where

Mabg~k!5@kbDag~k!1kgDab~k!#/2i ,

with

Dab~k!5dab2
kakb

k2 .

The passive scalar, in particular the temperature fieldT, is
governed by the thermal energy equation, which in wa
number space reads

S ]

]t
1s0k2DT~k,t !52 ikaE d3 j T~k2 j ,t !ua~ j ,t !. ~2!

The basic idea of recursive RG analysis is to divide
wave number space (0,k0), wherek0 is Kolmogorov’s scale,
to a supergrid region (0,kc) and a subgrid region (kc ,k0);
the subgrid modes are then removed shell by shell by tak
the subgrid average over a spherical shell (kn11 ,kn), as
shown in Fig. 1.

FIG. 1. The terminiki for recursive renormalization with a fixe
cutoff ratioL5kn11 /kn . Recursive renormalization analysis sta
at the Kolmogorov’s scalek0 and ends at the cutoff wave numb
kc .
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To distinguish the supergrid and subgrid modes, we int
duce the commonly used notation as follows:

ua~k,t !5H ua
,~k,t ! for uku,k1 ,

ua
.~k,t ! for uku.k1 ,

and

T~k,t !5H T,~k,t ! for uku,k1 ,

T.~k,t ! for uku.k1 .

Before substantial progress can be made with the renorm
ization group analysis, we shall take the following statistic
hypotheses: ~i! The turbulence fields have ensemble-mea
zero fluctuation:

^ua
.~k,t !&5^T.~k,t !&50.

~ii ! Supergrid components are considered to be statistic
independent of subgrid averaging:

^ua
,~k,t !&5ua

,~k,t !, ^T,~k,t !&5T,~k,t !.

~iii ! The triple moment of velocity and thermal passive sca
is considered to follow the quasi-normal approximation@11#,
as explained in Lesieur@13#, p. 238:

^uuT&5^uu&^T&.

Performing subgrid averaging of Eqs.~1! and ~2! with the
use of~i! and~ii !, we may obtain, respectively, the equatio
for the supergrid velocityua

, ,

S ]

]t
1n0k2Dua

,~k,t !5Mabg~k!E d3 j @ub
,~ j ,t !ug

,~k2 j ,t !

1^ub
.~ j ,t !ug

.~k2 j ,t !&#, ~3!

and the equation for the supergrid temperatureTa
, ,

S ]

]t
1s0k2DT,~k,t !52 ikaE d3 j @T,~k2 j ,t !ua

,~ j ,t !

1^T.~k2 j ,t !ua
.~ j ,t !&#. ~4!

As for the subgrid components, we shall take the Markov
approximation by neglecting]/]t; this gives, respectively
the equation for the subgrid velocityua

. ,

~n0 j 2!ua
.~ j ,t !5Mabg~ j !E d3 j 8@ub

,~ j 8,t !ug
,~ j2 j 8,t !

12ub
,~ j 8,t !ug

.~ j2 j 8,t !

1ub
.~ j 8,t !ug

.~ j2 j 8,t !#, ~5!

and the equation for the subgrid temperatureTa
. ,
4-2
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~s0k2!T.~k,t !52 ikaE d3 j 8@T,~k2 j 8,t !ua
,~ j 8,t !

1T.~k2 j 8,t !ua
,~ j 8,t !1T,

3~k2 j 8,t !ua
.~ j 8,t !1T.~k2 j 8,t !

3ua
.~ j 8,t !#. ~6!

It was shown by our previous study that the second te
on the right-hand side~RHS! of Eq. ~3! has been ascribed t
the production to the effective viscous eddy diffusivity. Pa
allel to this, we shall evaluate explicitly the second term
the RHS of Eq.~4!, which contributes to the effective the
mal eddy diffusivity.

For this purpose, we make use of Eq.~6! by renaming the
indexa by b andk by k2 j , and then multiply on both side
by ua

.( j ,t), followed by subgrid ensemble averaging. Th
yields

~s0uk2 j u2!^T.~k2 j ,t !ua
.~ j ,t !&

52 i ~kb2 j b!E d3 j 8@^T.~k2 j2 j 8,t !

3ua
.~ j ,t !ub

,~ j 8,t !&

1^T,~k2 j2 j 8,t !ua
.~ j ,t !ub

.~ j 8,t !&#, ~7!

where we have employed hypothesis~iii ! to treat^T.u.u.&
as a zero subgrid-averaging term. The next step is to mult
T.(k2 j ,t) on both sides of Eq.~5!, and then take subgrid
averaging to obtain

~n0 j 2!^T.~k2 j ,t !ua
.~ j ,t !&

52Mabg~ j !E d3 j 8^ub
,~ j 8,t !ug

.~ j2 j 8,t !T.~k2 j ,t !&.

~8!

Adding Eqs.~7! and ~8! together gives

~s0uk2 j u21n0 j 2!^T.~k2 j ,t !ua
.~ j ,t !&

5E d3 j 8@2 i ~kb2 j b!^T.~k2 j2 j 8,t !ua
.~ j ,t !

3ub
,~ j 8,t !&12Mabg~ j !^ub

,~ j 8,t !ug
.~ j2 j 8,t !

3T.~k2 j ,t !&2 i ~kb2 j b!^T,~k2 j2 j 8,t !

3ua
.~ j ,t !ub

.~ j 8,t !&#. ~9!

According to hypothesis~iii !, both the first and second term
on the RHS of the above equation vanish Eq.~9! simply
reduces to
01630
-
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~s0uk2 j u21n0 j 2!^T.~k2 j ,t !ua
.~ j ,t !&

52 i ~kb2 j b!E d3 j 8^ua
.~ j ,t !ub

.~ j 8,t !&T,~k2 j2 j 8,t !

52 i ~kb2 j b!E d3 j 8Dab~ j !d~ j1 j 8!Q~ j !T,~k2 j2 j 8,t !

52 ikbDab~ j !Q~ j !T,~k,t !, ~10!

where we have used the velocity autocorrelation

^ua
.~ j ,t !ub

.~ j 8,t !&5Dab~ j !d~ j1 j 8!Q~ j !

and applied the obvious relationj bDab( j )50 in the last
equality.

Substituting Eq.~10! into Eq. ~4!, we finally obtain, after
removing the first subgrid shell, the renormalized equat
for the passive temperatureT:

S ]

]t
1s1~k!k2DT~k,t !52 ikaE d3 j T~k2 j ,t !ua~ j ,t !

~11!

for 0,uku,k1 by introducing the effective thermal eddy di
fusivity

s1~k!5s01ds0~k!,

with the first increment given by

ds0~k!5
kakb

4pk2 E
V0

d3 j
Dab~ j !E~ j !

@s0uk2 j u21n0 j 2# j 2

5
1

4p E
V0

d3 j
~12m2!E~ j !

@s0uk2 j u21n0 j 2# j 2 ,

where we have denoted byE( j ) the isotropic energy spec
trum as 4p j 2Q( j ), andm the direction cosine between th
vectorsk and j , and thuskakbDab( j )5k2(12m2). The in-
tegration is over the set of intersection of two spheres:

V0~k!5$ j uk1,u j u, uk2 j u,k0%.

Repeating the renormalization procedure for removal of
nth subgrid shell yields the general recursive relationship
the effective thermal eddy diffusivity for 0,uku,kn11 ,

sn11~k!5sn~k!1dsn~k!, ~12!

with the nth increment given by

dsn~k!5
1

4p E
Vn

d3 j
~12m2!En~ j !

@sn~k2 j !uk2 j u21nn~ j ! j 2# j 2 ,

~13!

wherenn(k) denotes the renormalized effective eddy visco
ity andEn( j ) the renormalized kinetic energy spectrum, bo
of which have been obtained by the present authors@1# in an
early study. Again, the integration is over the set of inters
tion of two spheres:
4-3



-

of
m

th

ly
the
ith

the

s,
ot

.
e

er
the

e

f-
ure

ve

BIN-SHEI LIN, CHIEN C. CHANG, AND CHI-TZUNG WANG PHYSICAL REVIEW E63 016304
Vn~k!5$ j ukn11,u j u, uk2 j u,kn%.

In parallel to Eq.~12!, we have had for the effective mo
mentum eddy viscosity

nn11~k!5nn~k!1dnn~k!, ~14!

with the increment given by

dnn~k!5
1

2p E
Vn

d3 j
L~k,k2 j !En~ j !

j 2k2@nn~ j !u j u21nn~ uk2 j u!uk2 j u2#
,

~15!

where

L~k,k2 j !5
~k422k3 j m1k j3m!~12m2!

uk2 j u2 .

For later use, we record here

En~ j !5ApCKen
2/3j 25/3expS 23

2
CK

21/2en
21/3nn~ j ! j 4/3D ,

~16!

whereCK is the Kolmogorov constant anden is the rate of
dissipation of the kinetic energy. The factorAp is a modified
function taking account of large-scale eddies given by

Ap~x![
xs15/3

11xs15/3,

wherex5k/kp with kp denotes the peak of wave number
energy-containing eddies. As expected, the effective ther
eddy diffusivitysn(k) for the passive scalarT should depend
in some way on its counterpartnn(k) for the momentum; Eq.
~13! exhibits explicitly such dependence. Figure 2 shows
typical trend, for the cutoff ratioL near unity, of the incre-
mentdsn(k) of the effective thermal eddy diffusivity, which

FIG. 2. The typical behavior of the increment of the effecti
eddy viscositydnn and thermal eddy diffusivitydsn versus the
normalized wave numberk(0<k<1), as the cutoff ratioL is close
to 1.
01630
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is shared with the incrementdnn(k) of the effective eddy
viscosity ~or viscous eddy diffusivity!. Both increments of
viscous and thermal eddy diffusivities start with negligib
small values at lower wave numbers and rise rapidly near
cutoff wave number; this behavior is in good agreement w
that obtained by Kraichnan@14# based on his testing field
model ~TFM!.

III. TURBULENT PRANDTL NUMBER Pr t

The simplest approach for turbulent heat transfer is
Reynolds analog, i.e.,n t5s t (Prt51). However, as indi-
cated by Kays@4#, for most thermal boundary layers flow
the Reynolds analog is quite close to correct, but it still n
precisely correct, and there are distinguished departures

In this section, we will analyze, for each cutoff wav
numberkc , the variation of the turbulent Prandtl numb
with the turbulent Peclet number. First of all, we evaluate
recursive relationship~12! for the effective thermal diffusiv-
ity at the terminal valuekn11 :

sn11~kn11!5sn~kn11!1dsn~kn11!.

By writing dk5kn2kn11 and evaluating Eq.~13! at kn11 ,
we readily obtain

sn11~kn11!2sn~kn11!

kn2kn11

5
CKen

2/3

4pdk E
Vn~kn11!

d3 j

3
~12m2!Ap~ j /kp! j 25/3e21.5CK

21/2en
21/3nn~ j ! j 4/3

@sn~k2 j !uk2 j u21nn~ j ! j 2# j 2 ,

~17!

whereAp51 as j @kp . In the limit of n@1, the integral on
the RHS is of orderdk and the numerator of the LHS of th
above equation must be in magnitude of the orderdk. By
taking the limit, we havedk!1, kn→kc , nn→n, sn→s,
and the measure ofVn(kn11) is of the orderdk, wheren
5n(kc) ands5s(kc) denote, respectively, the invariant e
fective viscous and thermal eddy diffusivities. The meas
of the setVn(kn11) given below Eq.~13!, in the limit of
kn11→kc , can be approximated by

P„V~kn11!…52pA12S 1

2
D 2 kc

3

A12~ 1
2 !2

dk

kc
1O~dk2!.

It follows from these facts that Eq.~17! is led to the differ-
ential version
4-4
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ds~kc!

dkc
'

CKj2/3

4pdk E
V~kc!

d3 j

3
@12~k/2j !2# j 25/3e21.5CK

21/2e21/3n~ j ! j 1/3

@s~k2 j !uk2 j u21n~ j ! j 2# j 2

→ CKe2/3e21.5B~1!kc
211/3

@12~
1
2 !2#

2@s~kc!1n~kc!#
, ~18!

whereB(1)5CK
21/2e21/3kc

4/3n(kc) and has been estimated
be 0.6633 from our previous analysis@1#. The same argu-
ment applies to the effective viscous eddy diffusivity a
leads to the differential expression

dn~kc!

dkc
5

CKe2/3e21.5B~1!Kc
211/3@12~ 1

2 !2#

4n~kc!
. ~19!

Equipped with the results of Eqs.~18! and~19!, we are now
able to proceed with derivation of an algebraic equation
lating the turbulent Prandtl number Prt to the turbulent Pecle
number Pet . For convenience of calculation, we definea to
be the inverse of the effective eddy Prandtl number Pr(kc)
and write

a~kc![Pr21~kc![
s~kc!

n~kc!
5

s01s t~kc!

n01n t~kc!
, ~20!

wheres0 and n0 denote in turn the molecular thermal an
viscous diffusivities, whilen t ands t are, respectively, called
the thermal and viscous turbulent eddy diffusivities. T
Prandtl number is defined to be Pr05n0 /s0 ; we may further
define the turbulent Prandtl number Prt5n t /s t and also the
turbulent Peclet number Pet5Pr0n t /n0 . Thena can further
be rewritten as

a5
11PetPrt

21

Pr01Pet
. ~21!

Differentiatinga with respect tokc in Eq. ~20! with use of
Eqs.~18! and ~19! yields

da~kc!

dkc
5H CKe2/3e21.5B~1!kc

211/3@12~ 1
2 !2#

2@s~kc!1n~kc!#
J 1

n~kc!

2a
n8~kc!

n~kc!

5S 2

a11
2a D n8~kc!

n~kc!
@since Eq. ~14!#.

~22!

Equation~22! can be easily integrated to give

ln@~a12!21/3~a21!22/3#5 ln n~kc!1C,

where the constantC should be chosen such thatn(kc)
→n0 ands(kc)→s0 askc→k0 ~with k0 denoting the Kol-
mogorov scale!, and thus
01630
-

S a12

a012D 1/3S a21

a021D 2/3

5
n0

n~kc!
. ~23!

Recalling n(kc)5n01n t(kc), we may rewrite the RHS of
the above equation to obtain

S a12

a012D 1/3S a21

a021D 2/3

5
1

11Pet /Pr0
. ~24!

It is of great interest to compare Eq.~24! with a similar
formula obtained by Yakhotet al. @12#, which reads, in terms
of the present notation,

S a12.1793

a012.1793D
0.35S a21.1793

a021.1793D
0.65

5
1

11Pet /Pr0
. ~25!

The apparent resemblance between the formulas~24! and
~25! is quite remarkable not only because of the similarity
mathematical structure, but because the results are basi
derived entirely from different approaches to renormalizat
group analysis of turbulence. According to Eqs.~24! and
~21!, Prt can be represented in terms of Pet for any given
Prandtl number Pr0. Figure 3 shows the results for thre
different values of Pr050.01, 0.025 and 0.1. Compariso
with the DNS ~direct-numerical-simulation! results of Bell
et al. @6# and Kim and Moin@7# shows excellent agreemen
for Pr050.1, while there is a mild discrepancy with that
Kasagi et al. @5#. For comparison, we recall from Kay@4#
that it is at Pr050.01 rather than Pr050.1 that the result
based on the formula of Yakhotet al. showed good agree
ment with the cited DNS results, which were all obtained
Pr050.1. For comparison with experiments, Fig. 4 sho
also close agreement of the present formula for Pr050.0058
~which has little difference while for Pr050.0072) with the

FIG. 3. The turbulent Prandtl number Prt versus the turbulent
Peclet number Pet , plotted based on Eqs.~24! and ~21! for
Pr050.001, 0.025, and 0.1 with comparisons to numerical res
from DNS by several authors, as shown.
4-5
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experimental data taken from Bremhost and Krebs@8# for
Pr050.0058, Sheriff and O’Kane@9# for Pr050.0072, and
Fuch @10# for Pr050.007, all measured in liquid sodium a
the centerline of thermal turbulent pipe flow. The latter tw
references did not report Prt directly in terms of Pet ; the data
shown are adapted from the references by appropriate
ings; Fuch’s result, however, still deviates from the pres
formula at small Pet .

The formula determined by Eq.~24! with a given by Eq.
~21! is of general interest in several aspects. For eacha0 ~or
Pr0), Eq. ~24! is an algebraic equation of degree 3; there
always a solution to it. For the particular Pr051, it is noticed
that the Reynolds analog, i.e., Prt51, always holds true no
matter what the turbulent Peclet number Pet is, but for Pr0
Þ1, the Reynolds analogy can only hold true in the limit
Pet@1. Figures 5~a! and 5~b! show, respectively, a few
curves of Prt versus Pet for Pr0<1 and for Pr0.1. For Pr0
,1, the turbulent Prandtl number Prt is observed to decreas
monotonically to 1 as Pet is increased indefinitely, while fo
Pr0.1, Prt increases with increasing Pet , and finally satu-
rates to 1. For either Pr0,1 or Pr0.1, the curve of Prt ver-
sus Pet is higher for larger Pr0 ; that is, for given Pet , the
magnitude of Prt would decrease as Pr0 is increased. For
each Pr0,1, there is a concise alternative which shows e
cellent approximation to the general formula, Eq.~24!, and
which is given by

Pet5
H

Pet
u 11, ~26!

whereH andu are positive integers that depend upon Pr0. An
example of this is the case of Pr050.1, for which we have
good approximation by settingH50.64 andu50.87 in Eq.
~26!. It is also of interest to note that a similar empiric

FIG. 4. The turbulent Prandtl number Prt versus the turbulen
Peclet number Pet plotted based on Eqs.~24! and ~21! for
Pr050.058~or 0.072! along with the experimental data measured
Bremhost and Krebs@8#, Sheriff and O’Kane@9#, and Fuch@10#.
01630
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formula based on experimental data has been propose
Bremhost and Krebs@8#. Finally, we noticed that the Pecle
number Pet is a thermal analog of the Reynolds number. T
reason why Prt always tends to 1 as Pet becomes sufficiently
large would be that at this time the thermal flow turbulence
completely convection dominated and the temperature fieT
responds immediately to any change of the velocity fieldv.

IV. INVARIANT EFFECTIVE THERMAL EDDY
DIFFUSIVITY

The purpose of the section is to determine the limiti
solution to the recursive renormalization equation~12! for
the effective thermal eddy diffusivitysn , as the cutoff ratio
L tends to 1.

First of all, we rescale the wave numberk by setting k̃
5k/kn11 . Suggested by our previous scaling result for t
effective eddy viscositynn(k)5 ñn( k̃)kn

24/3, we propose also
a similar scaling law for the effective thermal eddy diffusi
ity sn(k)5s̃n( k̃)kn

24/3 and rewrite Eq.~13! in the form

dsn~k!5
CKen

2/3kn11
24/3

4p
E

Ṽn

d3 j̃

3
~12m2!Apj̃ 25/3exp~2 3

2 CK
21/2ñn~ j̃ !en

21/3j̃ 4/3

@s̃n~ k̃2 j̃ !uk̃2 j̃ u21 ñn~ j̃ ! j̃ 2# j̃ 2
.

~27!

The recursive equation~12! can then be recast in the rescal
dimensionless form

s̃n11~ k̃!2L24/3s̃n~ k̃L!5L24/3ds̃n~ k̃L!. ~28!

FIG. 5. Curves of the turbulent Prandtl number Prt versus the
turbulent Peclet number Pet drawn based on Eqs.~24! and~21!. Part
~a! for Pr0<1, which is from above 0.005, 0.05, 0.5, and 1; part~b!
for Pr0.1, which is from above 5, 10, 20, 30, and 40.
4-6
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Now we write L512j, and let n→`. Equivalently, we
havej→0, s̃n→s̃, and thus Eq.~28! becomes forn@1

F k̃
ds̃~ k̃!

dk̃
1

4

3
s̃~ k̃!G j

5
~12j!24/3

4p
CKe2/3E

Ṽ
d3 j̃

3
~12m2!Apj̃ 25/3exp~2 3

2 CK
21/2ñe21/3j̃ 4/3!

j̃ 2@ ñ~ j̃ !u j̃ u21s̃~ uk̃2 j̃ u!uk̃2 j̃ u2#

5
CKe2/3

4p

Ap
c exp~21.5CK

21/2ñ~1!e21/3!

ñ~1!1s̃~1!

3F12S k̃
2
D 2GP~Ṽ!1O~j2!, ~29!

whereAp
c5Ap(kc /kp) and we have knownP(Ṽn)52p k̃j

1O(j2), asn@1. And therefore Eq.~29! in the limit of j
→0 becomes

k̃
ds̃~ k̃!

dk̃
1

4

3
s̃~ k̃!

5
CKe2/3

2

Ap
c exp~21.5CK

21/2ñ~1!e21/3!

ñ~1!1s̃~1!

3 k̃F12S k̃

2
D 2G . ~30!

This is an inhomogeneous ordinary differential equation t
we seek for the rescaled invariant effective thermal ed
diffusivity s̃( k̃). The equation is simple enough to rend
itself a closed-form solution. To simplify the expression,
us introduceBT( k̃)5CK

21/2e21/3s̃( k̃), and rewrite Eq.~30!
in a more compact form

k̃
dBT~ k̃!

dk̃
1

4

3
BT~ k̃!5

exp@21.5B~1!#

2@BT~1!1B~1!#
k̃F12S k̃

2
D 2G .

~31!

Equation~31! can be easily integrated to give the exact s
lution

BT~ k̃!5S BT~1!2
135

364
C̃sD k̃24/31C̃sS 3

7
k̃2

3

52
k̃3D ,

~32!

whereBT(1) is to be determined below andC̃s is given by

C̃s5Ap
c exp@21.5B~1!#/$2@BT~1!1B~1!#%.

If we return BT( k̃) to s(k), the leading term ofs(k) is
simply proportional toe1/3k24/3; this scaling result is exactly
Richardson’s four-thirds law~cf. @15#, p. 556!. To determine
01630
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BT(1), we have had the estimateB(1)50.6633, and thus
BT(1) can be found from the turbulent Prandtl numbert
51 in the limit of large Pet @cf. Eq.~24!#. It follows from Eq.
~21! that Pet@1 for moderate Pr0 impliesa51/Prt51; then,
we have

15a~kc!5
s~kc!

n~kc!
5

CK
1/2e1/3kc

24/3BT~1!

CK
1/2e1/3kc

24/3B~1!
5

BT~1!

0.6633

and thereforeBT(1)5B(1)50.6633. Substituting the valu
in the expression ofC̃s , we finally have the same form a
B( k̃) for the solutionBT( k̃):

BT~ k̃!5B~ k̃!50.6116k̃24/310.1394S 3

7
k̃2

3

52
k̃3D .

~33!

V. EVALUATION OF THE BATCHELOR CONSTANT

Batchelor@2,3# was the first to propose scaling laws fo
the thermal energy spectrum respectively for Pr0@1 and
Pr0!1, leaving a proportional constantCB undetermined.
Subsequently, many authors have tried to estimate or m
sure the value ofCB under various flow conditions.

In theory, Kraichnan@14# had the estimateCB50.208,
and Gibson@16# had the estimateCB50.9, while Yakhot and
Orszag@17# obtainedCB51.16 according to theire-based
renormalization group analysis. Kerr@18# had the numerical
valueCB50.6. In experiment, Gibson and Schwarz@19# had
CB50.35, Grantet al. @20# obtainedCB50.31, and Boston
and Burling @21# had CB50.81, while Gurvich and Zubk-
ovski @22# obtainedCB52.0.

In the present study, we shall show that Batchelor’s c
stant actually depends on Pr0 as well as some characterist
wave numbers to be described below. First of all, let
modify the original Batchelor’s thermal energy spectrum
introducing two connecting functionsB1 and B2 , respec-
tively, for Pr0!1 and Pr0@1 so that the scaling laws with a
appropriate choice of the proportional constant may fit w
the experimental data. Letx denote the dissipation rate of th
thermal energy; we have for Pr0!1,

ET~k!5CBB1~x!xe21/3k25/3, ~34!

where

B1~x![
x24

11x24 with x5
k

kcd
;

for Pr0@1,

ET~k!5CBB2~x!xe21/3k25/3e22sk2An/e, ~35!

where

B2~x![
x2/3~11x21!

11x21/3 with x5
k

kds
.

In these expressions,kcd is the conductive wave numbe
which is of the order (e/s3)1/4, while kds is the dissipation
4-7
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wave number of the order (e/n3)1/4. There are two other
important characteristic wave numbersks andkp , which de-
note, respectively, the wave number of the largest eddy
isting in the flow and the peak wave number of the ener
containing eddies.

Figure 6 shows that the measured data of Boston
Burling @21# fit excellently with the curve plotted based o
Eq. ~34! for Pr0!1 with the value ofkcd as indicated. Bos-
ton and Burling made measurements in air at a height ofm
over a tidal mud flat; their data showed thatkp /k0 andks /k0
are almost identical and take the value about 0.001, w
kcd /k0 locates at about 0.03. Air-H2O at 290 K has Prandt
number Pr0'0.73. From the figure, we observe that Eq.~34!
follows a power law of25/3 in the inertial-convective rang
of ks,k,kcd and a power law of217/3 in the inertial-
conductive range ofkcd,k,k0 .

FIG. 6. The scaling law of the thermal energy spectrumET(k)
versus the normalized wave numberk/k0 for Pr0!1, defined by Eq.
~34! with a proper choice of the proportional constant, fits well t
measured data taken from Boston and Burling@21#.
01630
x-
-
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Figure 7 shows that the measured data of Grantet al. @20#
is in good agreement with the curve plotted based
Eq. ~35! for Pr0@1 with the value ofkds as indicated. Grant
et al. performed experiments in the open sea and in a t
channel; their data showed thatk0 is about the order of
40, kvc is of the order 1, andks /k0 and kp /k0 are almost
identical and take the value about 0.001, whilekds /k0

locates at about 0.06. Liquid water at 293 K has Pran
number Pr0'6.99. From the figure, we observe that Eq.~35!
followed a power law of25/3 in the inertial-convective
range ofks,k,kds and a power law of21 in the viscous-
convective range ofkds,k,kvc , wherekvc is of the order
(e/s2n)1/4.

With Eqs. ~34! and ~35!, we are now able to determin
the Batchelor constant; it is natural to require

FIG. 7. The plot shows that the scaling law of the thermal e
ergy spectrumET(k) versus the wave numberk for Pr0@1, defined
by Eq. ~35! with a proper choice of the proportional constant, fi
well the measured data taken from Grantet al. @20#
x5E
ks

kc
2s~k!k2ET~k!dk55 Eks

kc
2CK

1/2CBxk1/3FT~k!B1~k/kcd!dk ~ for Pr0!1!,

E
ks

kc
2CK

1/2CBxk1/3FT~k!B2~k/kds!e
22sk2An/edk ~ for Pr0@1!

, ~36!

where the functionFT is introduced by settings(k)5CK
1/2e1/3FT(k) in analogy with its viscous counterpartn(k)

5CK
1/2e1/3F(k), and thus we haveFT(k)5BT(k)kc

24/3@F(k)5B(k)kc
24/3#. Rearrangement of Eq.~36! gives

CB55 F2CK
1/2E

ks

kc
k1/3FT~k!B1~k/kcd!dkG21

~ for Pr0!1!,

F2CK
1/2E

ks

kc
k1/3FT~k!B2~k/kds!e

22CK
3/4FTAFk2

dkG21

~ for Pr0@1!.

~37!
4-8
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Figure 8~a! shows a plot ofCB versuskc /k0 based on Eq.
~37! for Pr0!1, from which it is clear to see also the depe
dence ofCB on the characteristic wave numbers: the co
ductive wave numberkcd and the peak energy-containin
wave numberkp ~or ks). There are two trends of interest t
be noted: ~i! The Batchelor constantCB increases with in-
creasing the normalizedkc /k0 , and ~ii ! CB increases as the
conductive ratiokcd /k0 is increased. The plot of this pa
varies in a range of characteristic wave numbers of ther
energy spectrum that include those measured by Boston
Burling @21# whose experiment gaveCB50.81, which is,
however, substantially higher than the values presente
the figure. Figure 8~b! is a plot ofCB versuskc /k0 based on
Eq. ~37! for Pr0@1, from which it is clear to see also th
dependence ofCB on the characteristic wave numbers: t
dd
il

as
o

01630
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dissipative wave numberkds and the peak energy-containin
wave numberkp ~or ks). There are also two trends of intere
to be noted: ~i! The Batchelor constantCB decreases with
increasing the normalizedkc /k0 , and~ii ! CB increases as the
dissipative ratiokds /k0 is increased. The plot of this par
varies in a range of characteristic wave numbers that incl
those measured by Grantet al. @20# whose experiment gave
CB50.31 in good agreement with the values presented in
figure. These observations indicate clearly thatCB is not a
universal constant, but depends on the shape of the ac
thermal energy spectrumET(k).

Equation~37! is in integral form, and the integration ma
be carried out if we make the approximation by taking on
the leading terms ofF(k) and FT(k), that is, FT(k)5FT
.0.6116k24/3; this yields the more explicit formula
CB5H H 1.3942CK
1/2F1

4
ln

~ks /kcd!
411

~kc /kcd!
411

1 ln
kc

ks
G J 21

~ for Pr0!1!,

H 1.3942CK
1/2e21.09CK

3/4S ln
kc

ks
1

3

2
R123R2D J 21

~ for Pr0@1!,

~38!
h

s-

el

mal-
.

where

R15S kc

kds
D 2/3

2S ks

kds
D 2/3

and

R25S kc

kds
D 1/3

2S ks

kds
D 1/3

.

VI. SMAGORINSKY MODEL FOR A PASSIVE SCALAR

The usual Smagorinsky model is used for the large-e
simulation of Navier-Stokes equation. In this section, we w
construct a parallel model for turbulent transport of the p
sive scalar. First of all, we express the rate of dissipation
the kinetic energye in the resolvable velocity:

e5
n~kc!

2 S ]ui
,

]xj
1

]uj
,

]xi
D 2

. ~39!

Recalls(k)5CK
1/2e1/3BT( k̃)kc

24/3 and evaluate Eq.~32! at kc

to obtain

s~kc!5CK
1/2e1/3BT~1!kc

24/3.

Replacinge on the RHS of the above equation by Eq.~39!
enables us to obtain
y
l
-
f

s~kc!50.6633CK
1/2Fn~kc!

2 S ]ui
,

]xj
1

]uj
,

]xi
D 2G1/3

kc
24/3.

~40!

Specifically, let us consider turbulent flow with Pet@1, for
which we have Pr(kc)'Prt(kc) according to Eq.~21!. Solv-
ing then the algebraic equation~40! for s(kc) with kc re-
placed by 2p/D where D denotes the cutoff wavelengt
gives

s~kc!5
0.66333/2

4&p2
APrt~kc!CK

3/4D2U]ui
,

]xj
1

]uj
,

]xi
U

[CP~kc!D
2U]ui

,

]xj
1

]uj
,

]xi
U. ~41!

Equation~41! is the thermal Smagorinsky model for the pa
sive scalarT, and the model constantCP is given by

CP~kc!5
0.66333/2

4&p2
APrt~kc!CK

3/4~kc!50.0097CK
3/4~kc!,

where we may simply take Prt(kc)51, implied by Pet@1
@cf. Eq. ~24!#. Figure 9 shows how the Smagorinsky mod
constantCP varies with kc /k0 . As the normalizedkc /k0
moves away from 1, the model constantCP is increasing,
and the constant increases also with increasing the nor
ized peak wave numberkp /k0 of energy-containing eddies
4-9
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VII. CONCLUDING REMARKS

In the present study, we have focused on renormaliza
group analysis of incompressible turbulence, aiming at
vestigating thermal turbulent transport properties.

First of all, we obtain a recursive relationship for the e
fective thermal eddy diffusivitys(kc). The relationship is
then applied to determine a formula for the turbulent Pran
number Prt in terms of the turbulent Pecelet number Pet .
Seeking the connection between Prt and Pet in a simple for-
mula is of great importance in modeling thermal turbule
flow and has motivated various studies in theoretical anal
and experimental measurement as well as in numerical s
lation. The simple algebraic equation~24! with Eq. ~21! pro-
vides one such connection, whose close resemblance to
~25! obtained by Yakhotet al. @12# is remarkable not only
because of the similarity in mathematical structure, but a
they are derived from entirely different approaches to ren
malization group analysis of turbulence. In particular, t
present formula has been shown to be in excellent agreem
with the results of direct numerical simulations by Bellet al.
@6# and Kim and Moin@7#, and in good agreement with tha
of Kasagi et al. @5#. The formula also shows close agre
ments with the measured data of Bremhost and Krebs@8# and
those adapted from Sheriff and O’Kane@9# and Fuch@10#
~but with discrepancy at small Pet).

Estimation of the Batchelor constant is then another ma
effort of study for thermal turbulent transport. Many autho
have tried to estimate or measure its value either by the
experiment, or numerical computation under various ther
flow conditions; the data obtained by different authors sca
in the range from as low as 0.2 of Kraichnan@14# to a value
2.0 of Gurvich and Zubkovsky@22#. What we have done in
the present study is to show analytically that the Batche
constant is not universal and to determine its depende
For this, we had to pursue the differential version of t
recursive relationship for an effective thermal eddy diffus

FIG. 8. The behavior ofCB vs kc /k0 for the flow with 0.001
,ks /k0,0.006 and 0.002,kp /k0,0.012. Part~a! for Pr0!1 with
0.05,kcd /k0,0.1; part~b! for Pr0@1 with 0.05,kds /k0,0.055.
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ity. Equation~30! is the required equation which is an inho
mogeneous ordinary differential equation and is sim
enough to render an exact~invariant! solution which is given
by Eq.~33!. Also, we have modified Batchelor’s scaling law
for the thermal energy spectrumET(k) by introducing two
connecting functionsB1 and B2 so that the scaling laws fi
better the measured spectra by Boston and Burling@21# for
air over sea surface and by Grantet al. @20# for water in a
tidal channel, but again leaving the proportional constan~s!
undetermined. The solution of the invariant effective therm
eddy diffusivity is then employed to determine the Batche
constant, which was shown to depend on several chara
istic wave numbers of the particular flow under consid
ation.

In spite of the above success, we must recall that
present theory is based on isotropic, stationary, and hom
neous turbulence, and statistical hypotheses~i!–~iii ! are not
nondebatable. But the close agreement between the resu
the present renormalization group analysis and DNS, exp
ments that typically do not follow the present assumptio
about turbulence, should, however, indicate that there m
be properties that are universal to all thermal turbulent flo
In particular, the formulas and relationships, as summari
above for various thermal turbulent properties, are sim
enough and are amenable to further investigation, verifi
tion, and modification under various flow and thermal co
ditions.

ACKNOWLEDGMENT

This work was supported in part by the National Scien
Council of the Republic of China under Contract N
NSC89-2212-E002-067.

FIG. 9. The behavior of the Smagorinsky constantCP versus
kc /k0 for the thermal turbulent transport with 0.001,ks /k0

,0.006 and 0.002,kp /k0,0.012; the upper curves correspond t
higher ratios.
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